Deep Level Saturation Spectroscopy

Author:

Gavryushin Vladimir1ORCID

Affiliation:

1. Semiconductors Physics Department Institute of Applied Research, Vilnius University, 10222 Vilnius, Lithuania

Abstract

We review the “Deep Level Saturation Spectroscopy” (DLSS) as the nonlinear method to study the deep local defects in semiconductors. The essence of a method is determined by the processes of sufficiently strong laser modulation (up to saturation) of quasistationar two-step absorption of the probe light via deep levels (DLs). DLSS is based on nonequilibrium processes of the optically induced population changes for deep levels which lead to the changes in an impurity absorption. This method allows us the separation of the spectral contributions from different deep centers (even in the case of their full spectral overlap), on the basis of the difference of their optical activity (photon capture cross-sections) and of their electroactivity difference (carriers capture coefficients). As shown, DLSS is allowed to determine directly the main set of phenomenological parameters (cross-sections, concentration, bound energy, etc.) for deep local defects, their content and energy position in the band gap. Some important aspects of DLSS were shown also: the possibility to connect directly the measured data to the local centers which are participating in radiative recombination, and also the possibility to study directly the phonon relaxation processes in the localized states of deep defects.

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Highlighting trapping phenomena in microwave GaN HEMTs by low-frequencyS-parameters;International Journal of Microwave and Wireless Technologies;2015-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3