Design of Faster R-CNN-Based Fault Detection Method for Subway Vehicles

Author:

Ma Hanlin1ORCID,Yao Mingyang2ORCID

Affiliation:

1. School of Power Technology, Liuzhou Railway Vocational Technical College, Liuzhou Guangxi 545616, China

2. School of Automatic Control, Liuzhou Railway Vocational Technical College, Liuzhou Guangxi 545616, China

Abstract

A substantial amount of maintenance and fault data is not properly utilized in the daily maintenance of pantographs in urban metro cars. Pantograph fault analysis can begin with three factors: the external environment, internal flaws, and joint behavior. Based on the analysis of pantograph fault types, corresponding measures are proposed in terms of pantograph fault handling and maintenance strategies, in order to provide safety guarantee for the safe and effective realization of rail transit vehicle speed-up and also provide reference for the maintenance and overhaul of pantographs. For the problem of planned maintenance no longer meeting current pantograph maintenance requirements, a defect diagnosis system based on a combination of faster R-CNN neural networks is presented. The pantograph image features are extracted by introducing an alternative to the original feature extraction module that can extract deep-level image features and achieve feature reuse, and the data transformation operations such as image rotation and enhancement are used to expand the sample set in the experiment to enhance the detection effect. The simulation results demonstrate that the diagnosis procedure is quick and accurate.

Funder

Project of Improving the Basic Scientific Research Ability of Young Teachers in Guangxi Universities

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Design of Faster R-CNN-Based Fault Detection Method for Subway Vehicles;Computational and Mathematical Methods in Medicine;2023-07-26

2. Handwriting Arabic Words Recognition in KHATT Dataset Based on Faster R-CNN;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3