An Adaptive Sparse Regularization Method for Response Covariance-Based Structural Damage Detection

Author:

Lin Jian-Fu1ORCID,Wu Wei-Lin12,Huang Jian-Liang2,Wang Jun-Fang3ORCID,Ren Wen-Xin3,Ni Yi-Qing4ORCID,Wang Li-Xin1

Affiliation:

1. Center of Safety Monitoring of Engineering Structures, Shenzhen Academy of Disaster Prevention and Reduction, China Earthquake Administration, Shenzhen 518003, China

2. Department of Applied Mechanics and Engineering, School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen 518107, China

3. MOE Key Laboratory for Resilient Infrastructures of Coastal Cities, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

4. Hong Kong Branch of National Rail Transit Electrification, Automation Engineering Technology Research Center, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Abstract

Structural damage detection is usually an ill-posed inverse problem due to the contamination of measurement noise and model error in structural health monitoring. To deal with the ill-posed damage detection problem, l2-regularization is widely used. However, l2-regularization tends to provide nonsparse solutions and distribute identified damage to many undamaged elements, potentially leading to false alarms. Therefore, an adaptive sparse regularization method is proposed, which considers spatially sparse damage as a prior constraint since structural damage often occurs in some locations with stiffness reduction at the sparse elements out of the large total number of elements in an entire structure. First, a response covariance-based convex cost function is established by incorporating an l1-regularized term and an adaptive regularization factor to formulate the sparse regularization-based damage detection problem. Then, optimal sensor placement is conducted to determine the optimal measurement locations where the acceleration responses are adopted for computing the response covariance-based damage index and cost function. Further, the predictor-corrector primal-dual path-following approach, an efficient and robust convex optimization algorithm, is applied to search for solutions to the damage detection problem. Finally, a comparison study with the Tikhonov regularization-based damage detection method is conducted to examine the performance of the proposed adaptive sparse regularization-based method by using an overhanging beam model subjected to different damage scenarios and noise levels. The numerical study demonstrates that the proposed method can effectively and accurately identify damage under multiple damage scenarios with various noise levels, and it outperforms the Tikhonov regularization-based method in terms of high accuracy and few false alarms. The analyses on time consumption, adaptiveness of the sparse regularization factor, model-error resistance, and sensor number influence are conducted for further discussions of the proposed method.

Funder

China Earthquake Administration

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3