A Comparative Study on Growth Performance, Body Composition, and Liver Tissue Metabolism Rearing on Soybean Lecithin-Enriched Artemia Nauplii and Microdiet in Rock Bream (Oplegnathus fasciatus) Larvae

Author:

Zhang Pian123,Tan Peng23ORCID,Zhang Lei123,Zhu Wenliang123,Chen Ruiyi23,Wang Ligai23,Xu Dongdong23ORCID

Affiliation:

1. Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China

2. Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China

3. Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316022, China

Abstract

This study is aimed at establishing optimal soybean lecithin (SL) enrichment protocols in Artemia nauplii and at comparing the growth performance, body composition, and liver tissue metabolism in rock bream (Oplegnathus fasciatus) larvae reared on SL-enriched Artemia nauplii or SL-enriched microdiet (MD). The enrichment protocol experiment results indicated 12 h enrichment, and 10 g SL/m3 seawater could obtain desirable results. Rock bream larvae (25 days posthatching (dph)) were fed Artemia nauplii or MD for 30 days with three replicates. At stage 1 (larval 25–40 dph), significantly higher growth performance was observed in larvae fed the live prey ( P < 0.05 ). Conversely, at stage 2 (41–55 dph), feeding with MD significantly increased larval standard length, and specific growth rate compared with those of larvae fed live prey. Larvae fed a MD showed decreased lipolysis-related lipase activity as well as decreased amino acid catabolism-related alanine aminotransferase and aspartate aminotransferase enzyme activities in liver tissue. RNA sequencing revealed that feeding with the MD primarily increased the expression of lipogenesis-related genes and protein translation-related gene expression in the liver tissue. Notably, feeding with MD significantly increased ribosome biogenesis-related genes as well as mitochondria synthesis-related gene expression, indicating a high protein anabolism rate and high energy production in liver tissue. In conclusion, 10 g SL/m3 seawater and 12 h could effectively enrich SL in Artemia nauplii. Retard weaning onto MD led to lower growth performance, which was likely due to the diversity of lipid and protein metabolism.

Funder

Science and Technology Program of Marine Fisheries Research Institute of Zhejiang Province

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3