Detection and Quantization of Bearing Fault in Direct Drive Wind Turbine via Comparative Analysis

Author:

Teng Wei1,Jiang Rui1,Ding Xian1,Liu Yibing1,Ma Zhiyong1

Affiliation:

1. School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

Abstract

Bearing fault is usually buried by intensive noise because of the low speed and heavy load in direct drive wind turbine (DDWT). Furthermore, varying wind speed and alternating loads make it difficult to quantize bearing fault feature that indicates the degree of deterioration. This paper presents the application of multiscale enveloping spectrogram (MuSEnS) and cepstrum to detect and quantize bearing fault in DDWT. MuSEnS can manifest fault modulation information adaptively based on the capacity of complex wavelet transform, which enables the weak bearing fault in DDWT to be detected. Cepstrum can calculate the average interval of periodic components in frequency domain and is suitable for quantizing bearing fault feature under varying operation conditions due to the logarithm weight on the power spectrum. Through comparing a faulty DDWT with a normal one, the bearing fault feature is evidenced and the quantization index is calculated, which show a good application prospect for condition monitoring and fault diagnosis in real DDWT.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3