Vibration Analysis for Fault Detection of Wind Turbine Drivetrains—A Comprehensive Investigation

Author:

Teng WeiORCID,Ding Xian,Tang Shiyao,Xu Jin,Shi Bingshuai,Liu Yibing

Abstract

Vibration analysis is an effective tool for the condition monitoring and fault diagnosis of wind turbine drivetrains. It enables the defect location of mechanical subassemblies and health indicator construction for remaining useful life prediction, which is beneficial to reducing the operation and maintenance costs of wind farms. This paper analyzes the structure features of different drivetrains of mainstream wind turbines and introduces a vibration data acquisition system. Almost all the research on the vibration-based diagnosis algorithm for wind turbines in the past decade is reviewed, with its effects being discussed. Several challenging tasks and their solutions in the vibration-based fault detection of wind turbine drivetrains are proposed from the perspective of practicality for wind turbines, including the fault detection of planetary subassemblies in multistage wind turbine gearboxes, fault feature extraction under nonstationary conditions, fault information enhancement techniques and health indicator construction. Numerous naturally damaged cases representing the real operational features of industrial wind turbines are given, with a discussion of the failure mechanism of defective parts in wind turbine drivetrains as well.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3