Affiliation:
1. School of Electrical and Information, Northeast Agricultural University, Harbin 150030, China
Abstract
Aiming at effective outlier elimination in the biological near-infrared spectral and achieving high accuracy predictive modeling, this paper proposes a novel outlier elimination method based onX-Yvariance and leverage analysis. Firstly, the characters of near-infrared spectral are summarized; then residual sampleX-variance, leverage, and residual sampleY-variance are concatenated as a divergence measurement. We further compared the proposed method withX-Yvariance, Mahalanobis distance, and HotellingT2statistical analysis; the experiment results demonstrate that the proposed methods have competitive outlier elimination and better performance in time complexity and accuracy. The proposed method can also be adopted for other outlier elimination tasks.
Funder
National High-tech R&D Program of China (863 Program)
Subject
General Engineering,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献