CARTA: Coding-Aware Routing via Tree-Based Address

Author:

He Xingyu1,Yang Guisong23ORCID

Affiliation:

1. College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Department of Computer Science and Engineering, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China

3. Department of Electrical and Computer Engineering, Michigan State University, East Lansing 48823, USA

Abstract

Network coding-aware routing has become an effective paradigm to improve network throughput and relieve network congestion. However, to detect coding opportunities and make routing decision for a data flow, most existing XOR coding-aware routing methods need to consume much overhead to collect overhearing information on its possible routing paths. In view of this, we propose low-overhead and dynamic Coding-Aware Routing via Tree-based Address (CARTA) for wireless sensor networks (WSNs). In CARTA, a Multi-Root Multi-Tree Topology (MRMTT) with a tree-based address allocation mechanism is firstly constructed to provide transmission paths for data flows. Then, a low-overhead coding condition judgment method is provided to detect real-time coding opportunities via tree address calculation in the MRMTT. Further, CARTA defines routing address adjustments caused by encoding and decoding to ensure the flows’ routing paths can be adjusted flexibly according to their real-time coding opportunities. It also makes additional constraints on congestion and hop count in the coding condition judgment to relieve network congestion and control the hop counts of routing paths. The simulation results verify that CARTA can utilize more coding opportunities with less overhead on coding, and this is ultimately beneficial for promoting network throughout and balancing energy consumption in WSNs.

Funder

Natural Science Foundation of Shanghai

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SDN-COR: An Efficient Network Coding Opportunistic Routing Method for Software-Defined Wireless Sensor Networks;KSII Transactions on Internet and Information Systems;2024-07-31

2. Coding-Aware Routing for Maximum Throughput and Coding Opportunities by Deep Reinforcement Learning in FANET;2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2022-12

3. Load-Balanced Topology Rebuilding for Disconnected Wireless Sensor Networks With Delay Constraint;IEEE Transactions on Sustainable Computing;2022-10-01

4. GLBR: A novel global load balancing routing scheme based on intelligent computing in partially disconnected wireless sensor networks;International Journal of Distributed Sensor Networks;2022-04

5. SCR-CC: A Novel Sensing Clustering Routing Algorithm Based on Collaborative Computing in Heterogeneous Sensor Networks;Security and Communication Networks;2021-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3