GLBR: A novel global load balancing routing scheme based on intelligent computing in partially disconnected wireless sensor networks

Author:

Sun Zeyu123ORCID,Liao Guisheng13,Zeng Cao13,Lan Lan13,Zhao Guozeng2

Affiliation:

1. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an, China

2. School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, China

3. Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an, China

Abstract

Load balancing is of great significance to extend the longevity of wireless sensor networks, due to the inherent imbalanced energy overhead in such networks. However, existing solutions cannot balance the load distribution in partially disconnected wireless sensor networks. For example, if a network is partitioned into several segments with different area sizes, some areas have much more traffic load than other areas. In this article, we propose a load-balanced routing scheme, which aims to balance energy consumption within each segment and among different segments. First, we adopt unequal transmission distances to build initial routing for intrasegment load balancing. Second, we adopt the genetic algorithm to build extra routing between different segments for intersegment load balancing. The unique character of our work is twofold. On one hand, we investigate partitioned wireless sensor networks where there are several isolated segments. On the other hand, we pursue load balancing from a global perspective rather than from a local one. Some simulations verify the effectiveness and the advantages of our scheme in terms of extra deployment cost, system longevity, and load balancing degree.

Funder

National Natural Science Founding of Henan

Key Science and Technology Projects of Henan Province

Key Funding Project of Colleges and University of Henan Province

National Natural Science Founding of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Task Decomposing Optimization in Wireless Sensor Network;Lecture Notes in Electrical Engineering;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3