Software Defect Prediction via Attention-Based Recurrent Neural Network

Author:

Fan Guisheng12ORCID,Diao Xuyang1ORCID,Yu Huiqun1ORCID,Yang Kang1ORCID,Chen Liqiong3ORCID

Affiliation:

1. Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China

2. Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China

3. Department of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

In order to improve software reliability, software defect prediction is applied to the process of software maintenance to identify potential bugs. Traditional methods of software defect prediction mainly focus on designing static code metrics, which are input into machine learning classifiers to predict defect probabilities of the code. However, the characteristics of these artificial metrics do not contain the syntactic structures and semantic information of programs. Such information is more significant than manual metrics and can provide a more accurate predictive model. In this paper, we propose a framework called defect prediction via attention-based recurrent neural network (DP-ARNN). More specifically, DP-ARNN first parses abstract syntax trees (ASTs) of programs and extracts them as vectors. Then it encodes vectors which are used as inputs of DP-ARNN by dictionary mapping and word embedding. After that, it can automatically learn syntactic and semantic features. Furthermore, it employs the attention mechanism to further generate significant features for accurate defect prediction. To validate our method, we choose seven open-source Java projects in Apache, using F1-measure and area under the curve (AUC) as evaluation criteria. The experimental results show that, in average, DP-ARNN improves the F1-measure by 14% and AUC by 7% compared with the state-of-the-art methods, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3