Semantic and traditional feature fusion for software defect prediction using hybrid deep learning model

Author:

Abdu Ahmed,Zhai Zhengjun,Abdo Hakim A.,Algabri Redhwan,Al-masni Mohammed A.,Muhammad Mannan Saeed,Gu Yeong Hyeon

Abstract

AbstractSoftware defect prediction aims to find a reliable method for predicting defects in a particular software project and assisting software engineers in allocating limited resources to release high-quality software products. While most earlier research has concentrated on employing traditional features, current methodologies are increasingly directed toward extracting semantic features from source code. Traditional features often fall short in identifying semantic differences within programs, differences that are essential for the development of reliable and effective prediction models. In contrast, semantic features cannot present statistical metrics about the source code, such as the code size and complexity. Thus, using only one kind of feature negatively affects prediction performance. To bridge the gap between the traditional and semantic features, we propose a novel defect prediction model that integrates traditional and semantic features using a hybrid deep learning approach to address this limitation. Specifically, our model employs a hybrid CNN-MLP classifier: the convolutional neural network (CNN) processes semantic features extracted from projects’ abstract syntax trees (ASTs) using Word2vec. In contrast, the traditional features extracted from the dataset repository are processed by a multilayer perceptron (MLP). Outputs of CNN and MLP are then integrated and fed into a fully connected layer for defect prediction. Extensive experiments are conducted on various open-source projects to validate CNN-MLP’s effectiveness. Experimental results indicate that CNN-MLP can significantly enhance defect prediction performance. Furthermore, CNN-MLP’s improvements outperform existing methods in non-effort-aware and effort-aware cases.

Funder

Sejong University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3