Platinum Nanoflower-Modified Electrode as a Sensitive Sensor for Simultaneous Detection of Lead and Cadmium at Trace Levels

Author:

Nguyen Thi Lieu12ORCID,Cao Van Hoang2,Pham Thi Hai Yen3,Le Truong Giang13ORCID

Affiliation:

1. Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam

2. Department of Chemistry, Quy Nhon University, 170-An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam

3. Institute of Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, Vietnam

Abstract

We introduce the fabrication and electrochemical application of platinum nanoflower-modified glassy carbon electrode (PtNFs/GCE) for the trace level determination of lead and cadmium using differential pulse anodic stripping voltammetry (DPASV). The modified electrodes have been characterized by EDX, XRD, SEM, and AFM techniques to confirm chemical and physical properties. The effect of potential electrodeposition on the properties of the electrode was investigated. At −0.2 V of potential, platinum developed with a nanoflower shape and dispersed densely all over the glassy carbon surface. In this condition, the highest of lead and cadmium electrochemical signals was clearly observed. The sensor showed wide linearity in the concentration range of 1–100 μg·L−1 with detection limits of 0.408 μg·L−1 and 0.453 μg·L−1 for lead and cadmium ions, respectively. The produced electrodes have good reproducibility with relative standard deviations of 4.65% for lead and 4.36% for cadmium ions. The results demonstrate that this simple, stable, and sensitive sensor is suitable for the simultaneous electrochemical determination of Pb2+ and Cd2+ at trace levels.

Funder

Quy Nhon University

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3