A Study of Visual Descriptors for Outdoor Navigation Using Google Street View Images

Author:

Fernández L.1,Payá L.1ORCID,Reinoso O.1ORCID,Jiménez L. M.1ORCID,Ballesta M.1ORCID

Affiliation:

1. Department of Systems Engineering and Automation, Miguel Hernandez University, Avda. de la Universidad s/n, Elche, 03202 Alicante, Spain

Abstract

A comparative analysis between several methods to describe outdoor panoramic images is presented. The main objective consists in studying the performance of these methods in the localization process of a mobile robot (vehicle) in an outdoor environment, when a visual map that contains images acquired from different positions of the environment is available. With this aim, we make use of the database provided by Google Street View, which contains spherical panoramic images captured in urban environments and their GPS position. The main benefit of using these images resides in the fact that it permits testing any novel localization algorithm in countless outdoor environments anywhere in the world and under realistic capture conditions. The main contribution of this work consists in performing a comparative evaluation of different methods to describe images to solve the localization problem in an outdoor dense map using only visual information. We have tested our algorithms using several sets of panoramic images captured in different outdoor environments. The results obtained in the work can be useful to select an appropriate description method for visual navigation tasks in outdoor environments using the Google Street View database and taking into consideration both the accuracy in localization and the computational efficiency of the algorithm.

Funder

Spanish Government

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3