Affiliation:
1. Electrical Engineering Department, COMSATS Institute of Information Technology, 47040 Wah Cantonment, Pakistan
Abstract
Independent component analysis (ICA) is a technique of blind source separation (BSS) used for separation of the mixed received signals. ICA algorithms are classified into adaptive and batch algorithms. Adaptive algorithms perform well in time-varying scenario with high-computational complexity, while batch algorithms have better separation performance in quasistatic channels with low-computational complexity. Amongst batch algorithms, the gradient-based ICA algorithms perform well, but step size selection is critical in these algorithms. In this paper, an adaptive step size gradient ascent ICA (ASS-GAICA) algorithm is presented. The proposed algorithm is free from selection of the step size parameter with improved convergence and separation performance. Different performance evaluation criteria are used to verify the effectiveness of the proposed algorithm. Performance of the proposed algorithm is compared with the FastICA and optimum block adaptive ICA (OBAICA) algorithms for quasistatic and time-varying wireless channels. Simulation is performed over quadrature amplitude modulation (QAM) and binary phase shift keying (BPSK) signals. Results show that the proposed algorithm outperforms the FastICA and OBAICA algorithms for a wide range of signal-to-noise ratio (SNR) and input data block lengths.
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献