The Bidirectional Information Fusion Using an Improved LSTM Model

Author:

Zheng Tianwei1ORCID,Wang Mei1ORCID,Guo Yuan1,Wang Zheng1

Affiliation:

1. Xian University of Science and Technology, Xian 710054, China

Abstract

The information fusion technology is of great significance in intelligent systems. At present, the modern coal-fired power plant has the fully functional sensor network. However, many data that are important for the operation of a power plant, such as the coal quality, cannot be directly obtained. Therefore, the information fusion technology needs to be introduced to obtain the implied information of the power plant. As a practical application, the soft measurement of coal quality is taken as the research object. This paper proposes an improved LSTM model combined with the bidirectional deep fusion, alertness mechanism, and parameter self-learning (DFAS-LSTM) to realize online soft computing for the coal quality analyses of industries and elements. First, a latent structure model is established to preprocess the noisy and redundant sensor network data. Second, an alertness mechanism is proposed and the self-learning method of the activation function parameters is used for the data feature extraction. Third, a deeply bidirectional fusion layer is added to the long short-term memory neural network model to solve the problem of the insufficient accuracy and the weak generalization. Using the historical data of the sensor network, the DFAS-LSTM model is established. Then, the online data of the sensor network is input to the DFAS-LSTM model to implement the online coal quality analyses. Experiment shows that the accuracy of the coal quality analyses is increased by 1%–2.42% compared to the traditionally bidirectional LSTM.

Funder

Shaanxi Province Science and Technology Project

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference38 articles.

1. Prediction of depression from EEG signal using long short-term memory (LSTM);S. D. Kumar

2. Multitask LSTM Model for Human Activity Recognition and Intensity Estimation Using Wearable Sensor Data

3. Densely Connected Bidirectional LSTM with Applications to Sentence Classification

4. Instance-aware image and sentence matching with selective multimodal LSTM;Y. Huang

5. A Hierarchical LSTM model for pedestrian trajectory prediction;H. Xue

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architecture, Technologies, and Applications of Location-Based Services;Mobile Information Systems;2023-07-28

2. Acknowledgment of patient in sense behaviors using bidirectional ConvLSTM;Concurrency and Computation: Practice and Experience;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3