Fresh Tea Sprouts Detection via Image Enhancement and Fusion SSD

Author:

Chen Bin1ORCID,Yan Jili1ORCID,Wang Ke1ORCID

Affiliation:

1. College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314000, China

Abstract

The accuracy of Fresh Tea Sprouts Detection (FTSD) is not high enough, which has become a big bottleneck in the field of vision-based automatic tea picking technology. In order to improve the detection performance, we rethink the process of FTSD. Meanwhile, motivated by the multispectral image processing, we find that more input information can lead to a better detection result. With this in mind, a novel Fresh Tea Sprouts Detection method via Image Enhancement and Fusion Single-Shot Detector (FTSD-IEFSSD) is proposed in this paper. Firstly, we obtain an enhanced image via RGB-channel-transform-based image enhancement algorithm, which uses the original fresh tea sprouts color image as the input. The enhanced image can provide more input information, where the contrast in the fresh tea sprouts area is increased and the background area is decreased. Then, the enhanced image and color image is used in the detection subnetwork with the backbone of ResNet50 separately. We also use the multilayer semantic fusion and scores fusion to further improve the detection accuracy. The strategy of tea sprouts shape-based default boxes is also included during the training. The experimental results show that the proposed method has a better performance on FTSD than the state-of-the-art methods.

Funder

Science and Technology Planning Project of Jiaxing

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Reference39 articles.

1. The two-dimension coordinates extraction of tea shoots picking based on image information;W. Pei;Acta Agriculturae Zhejiangensis,2016

2. Research on the application of automation software control system in tea garden mechanical picking;G. Ya

3. Tender Tea Shoots Recognition and Positioning for Picking Robot Using Improved YOLO-V3 Model

4. A local binary pattern based texture descriptors for classification of tea leaves

5. Quality assessment of fresh tea leaves by estimating total polyphenols using near infrared spectroscopy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3