Detection and Adaptive Video Processing of Hyperopia Scene in Sports Video

Author:

Chen Qingjie12,Dong Minkai3ORCID

Affiliation:

1. School of Sports and Health, Linyi University, Linyi 276000, Shandong, China

2. School of Political Science and Public Administration, Shandong University, Jinan 250100, Shandong, China

3. P.E. Department, Shanghai University of Finance and Economics, Yangpu, Shanghai 200433, China

Abstract

In the research of motion video, the existing target detection methods are susceptible to changes in the motion video scene and cannot accurately detect the motion state of the target. Moving target detection technology is an important branch of computer vision technology. Its function is to implement real-time monitoring, real-time video capture, and detection of objects in the target area and store information that users are interested in as an important basis for exercise. This article focuses on how to efficiently perform motion detection on real-time video. By introducing the mathematical model of image processing, the traditional motion detection algorithm is improved and the improved motion detection algorithm is implemented in the system. This article combines the advantages of the widely used frame difference method, target detection algorithm, and background difference method and introduces the moving object detection method combining these two algorithms. When using Gaussian mixture model for modeling, improve the parts with differences, and keep the unmatched Gaussian distribution so that the modeling effect is similar to the actual background; the binary image is obtained through the difference between frames and the threshold, and the motion change domain is extracted through mathematical morphological filtering, and finally, the moving target is detected. The experiment proved the following: when there are more motion states, the recall rate is slightly better than that of the VIBE algorithm. It decreased about 0.05 or so, but the relative accuracy rate increased by about 0.12, and the increase ratio is significantly higher than the decrease ratio. Departments need to adopt effective target extraction methods. In order to improve the accuracy of moving target detection, this paper studies the method of background model establishment and target extraction and proposes its own improvement.

Funder

National Social Science Fund

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3