An Intelligent Ship Image/Video Detection and Classification Method with Improved Regressive Deep Convolutional Neural Network

Author:

Huang Zhijian12ORCID,Sui Bowen1ORCID,Wen Jiayi1,Jiang Guohe1ORCID

Affiliation:

1. Lab of Intelligent Control and Computation, Shanghai Maritime University, Shanghai 201306, China

2. Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA

Abstract

The shipping industry is developing towards intelligence rapidly. An accurate and fast method for ship image/video detection and classification is of great significance for not only the port management, but also the safe driving of Unmanned Surface Vehicle (USV). Thus, this paper makes a self-built dataset for the ship image/video detection and classification, and its method based on an improved regressive deep convolutional neural network is presented. This method promotes the regressive convolutional neural network from four aspects. First, the feature extraction layer is lightweighted by referring to YOLOv2. Second, a new feature pyramid network layer is designed by improving its structure in YOLOv3. Third, a proper frame and scale suitable for ships are designed with a clustering algorithm to reduced 60% anchors. Last, the activation function is verified and optimized. Then, the detecting experiment on 7 types of ships shows that the proposed method has advantage compared with the YOLO series networks and other intelligent methods. This method can solve the problem of low recognition rate and real-time performance for ship image/video detection and classification with a small dataset. On the testing-set, the final mAP is 0.9209, the Recall is 0.9818, the AIOU is 0.7991, and the FPS is 78–80 in video detection. Thus, this method provides a highly accurate and real-time ship detection method for the intelligent port management and visual processing of the USV. In addition, the proposed regressive deep convolutional network also has a better comprehensive performance than that of YOLOv2/v3.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3