Quantitative Analysis of Water Vapor Transport during Mei-Yu Front Rainstorm Period over the Tibetan Plateau and Yangtze-Huai River Basin

Author:

Yang Hao1ORCID,Xu Guan-yu2,Wang Xiaofang1ORCID,Cui Chunguang1,Wang Jingyu1,He Dengxin1

Affiliation:

1. Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China

2. Wuhan Central Meteorological Observatory, Wuhan 430205, China

Abstract

There are continuous precipitation systems moving eastward from the Tibetan Plateau to the middle and lower reaches of the Yangtze-Huai River during the Mei-yu period. We selected 20 typical Mei-yu front precipitation cases from 2010 to 2015 based on observational and reanalysis data and studied the characteristics of their environmental fields. We quantitatively analyzed the transport and sources of water vapor in the rainstorms using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4.9) model. All 20 Mei-yu front precipitation cases occurred in a wide region from the Tibetan Plateau to the Yangtze-Huai River. The South Asian high and upper level jet stream both had strong intensities during the Mei-yu front rainstorm periods. Heavy rainfall mainly occurred in the divergence zone to the right of the high-level jet and in the convergence zone of the low-level jet, where strong vertical upward flows provided the dynamic conditions required for heavy rainfall. The water vapor mainly originated from the Indian Ocean, Bay of Bengal, and South China Sea. 52% of the air masses over the western Tibetan Plateau originated from Central Asia, which were rich in water vapor. The water vapor contribution at the initial position was only 41.5% due to the dry, cold air mass over Eurasia, but increased to 47.6% at the final position. Over the eastern Tibetan Plateau to the Sichuan Basin region, 40% of the air parcels came from the Indian Ocean, which was the main channel for water vapor transport. For the middle and lower reaches of the Yangtze River, 37% of the air parcels originated from the warm and humid Indian Ocean. The water vapor contribution at the initial position was 38.6%, but increased to 40.2% after long-distance transportation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3