Affiliation:
1. LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2. Hebei Province Meteorological Observatory, Shijiazhuang 050022, China
Abstract
The air-pollution episodes in China in January 2013 were the most hazardous in the Beijing-Tianjin-Hebei (BTH) region. PM2.5, AOD, and long-term visibility data, along with various climate and meteorological factors and the boundary-layer structure, were used to investigate the cause of the heavy-haze pollution events in January 2013. The result suggests that unfavorable diffusion conditions (weak surface winds and high humidity) and high primary-pollutant emissions have induced heavy-haze pollution in the BTH region over the past two decades. A sudden stratospheric warming (SSW), weak East Asian winter monsoon, a weak Siberian High, weak meridional circulation, southerly wind anomalies in the lower troposphere, and abnormally weak surface winds and high humidity were responsible for the severe haze pollution events, rather than an abrupt increase in emissions. Heavy/severe haze pollution is associated with orographic wind convergence zones along the Taihang and Yanshan Mountains, slight winds (1.7∼2.1 m/s), and high humidity (70%∼90%), which limits the diffusion of pollutants and facilitates the hygroscopic growth of aerosols. Recirculation and regional transport, along with the poorest diffusion conditions and favorable conditions for hygroscopic growth of aerosols and secondary transformation under the high emission, led to explosive growth and the record high hourly average concentration of PM2.5in Beijing.
Funder
National Natural Science Foundation of China
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献