Important Role of Low Cloud and Fog in Sulfate Aerosol Formation During Winter Haze Over the North China Plain

Author:

Cai Suyi12,Liu Tengyu123ORCID,Huang Xin123ORCID,Song Yu4ORCID,Wang Tiantian4ORCID,Sun Zhaobin5ORCID,Gao Jian6,Ding Aijun123ORCID

Affiliation:

1. Joint International Research Laboratory of Atmospheric and Earth System Sciences School of Atmospheric Sciences Nanjing University Nanjing China

2. National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta Nanjing China

3. Frontiers Science Center for Critical Earth Material Cycling Nanjing University Nanjing China

4. Department of Environmental Science State Key Joint Laboratory of Environmental Simulation and Pollution Control Peking University Beijing China

5. State Key Laboratory of Severe Weather Chinese Academy of Meteorological Sciences China Meteorological Administration Beijing China

6. Chinese Research Academy of Environmental Sciences Beijing China

Abstract

AbstractSulfate aerosol greatly contributes to wintertime haze pollution in emission‐intensive regions like the North China Plain (NCP) in China. Fast sulfate increase and accumulation are usually recorded during winter haze; however, the multiphase oxidation of sulfur dioxide (SO2) and the physical processes affecting near‐surface sulfate are not fully understood. By combining in situ observations and numerical simulations, we found that high sulfur oxidation ratios (>0.6) under heavily polluted conditions are associated with low clouds and fog over NCP, induced by the moist southerly airflow. Thick low clouds and high SO2 levels in NCP provide a reaction environment for sulfate production. The sulfate production rate in cloud water can reach 0.5–1.3 μg m−3 h−1. The results demonstrate that the vertical mixing of sulfate generated within the cloud water to the surface plays a significant role in rapid sulfate production, highlighting the importance of understanding cloud‐water processes in haze pollution.

Publisher

American Geophysical Union (AGU)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3