The Steel Surface Multiple Defect Detection and Size Measurement System Based on Improved YOLOv5

Author:

Xu Yiming1,Ding Ziheng1ORCID,Li Wang1,Zhang Kai1ORCID,Tong Le2ORCID

Affiliation:

1. School of Electrical Engineering, Nantong University, Nantong 226019, China

2. Shanghai Normal University, Shanghai 200234, China

Abstract

In the process of steel production, the defects on the surface of steel will adversely affect the subsequent processing of a product. Accurate detection of such defects is the key to improve production efficiency and economic benefits. In this paper, an end-to-end steel surface defect detection and size measurement system based on the YOLOv5 model is designed. Firstly, in consideration of the defect location and direction correlation in the production process, a coordinate attention mechanism is added at the head of YOLOv5 to strengthen the spatial correlation of the steel surface and an adaptive anchor box generation method based on defect shape difference feature is proposed, which realizes the detection of three main types of defects on the Pytorch deep learning framework. Secondly, BiFPN is used to strengthen the feature fusion and a transformer encoder is added to improve the performance of detecting small defects. Thirdly, calculate the conversion ratio between the pixel and the actual size according to the standard reference specimen and obtain the actual size through the pixel statistics of the defect area to achieve pixel level size measurement. Finally, the steel surface defect detection and size measurement system are designed in this paper, which consist of various hardware, related measurement, and detection algorithms. According to the experimental results, the comprehensive defect detection accuracy of this method reaches 93.6%, of which the scratch detection accuracy reaches 95.7%. The detection speed reaches 133 fps and the defect size measurement accuracy reaches 0.5 mm. Experimental result shows that the defect detection and size measurement system designed in this paper can accurately detect and measure various industrial production defects and can be applied to the actual production process.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3