Abstract
The detection of surface defects is very important for the quality improvement of steel plates. In actual production, as the steel plate production line runs faster, the steel surface defect detection algorithm is required to meet the requirements of real-time detection (less than 100 ms/image), and the detection accuracy is improved (at least 90%). In this paper, an improved multi-block local binary pattern (LBP) algorithm is proposed. This algorithm not only has the simplicity and efficiency of the LBP algorithm, but also finds a suitable scale to describe the defect features by changing the block sizes, thus ensuring high recognition accuracy. The experiment proves that the method satisfies the requirements of online real-time detection in terms of speed (63 ms/image), and surpasses the widely-used scale invariant feature transform (SIFT), speeded up robust features (SURF), gray-level co-occurrence matrix (GLCM), and LBP algorithms in recognition accuracy (94.30%), which prove that the MB-LBP has practical application value in an online real-time detection system.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献