Multipopulation Genetic Algorithms with Different Interaction Structures to Solve Flexible Job-Shop Scheduling Problems: A Network Science Perspective

Author:

Deng Ding-Shan1ORCID,Long Wei1ORCID,Li Yan-Yan1ORCID,Shi Xiao-Qiu2ORCID

Affiliation:

1. School of Mechanical Engineering, Sichuan University, Chengdu 610065, China

2. School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China

Abstract

Populations of multipopulation genetic algorithms (MPGAs) parallely evolve with some interaction mechanisms. Previous studies have shown that the interaction structures can impact on the performance of MPGAs to some extent. This paper introduces the concept of complex networks such as ring-shaped networks and small-world networks to study how interaction structures and their parameters influence the MPGAs, where subpopulations are regarded as nodes and their interaction or migration of elites between subpopulations as edges. After solving the flexible job-shop scheduling problem (FJSP) by MPGAs with different parameters of interaction structures, simulation results were measured by criteria, such as success rate and average optimal value. The analysis reveals that (1) the smaller the average path length (APL) of the network is, the higher the propagation rate will be; (2) the performance of MPGAs increased first and then decreased along with the decrease of APL, indicating that, for better performance, the networks should have a proper APL, which can be adjusted by changing the structural parameters of networks; and (3) because the edge number of small-world networks remains unchanged with different rewiring possibilities of edges, the change in performance indicates that the MPGA can be improved by a more proper interaction structure of subpopulations as other conditions remain unchanged.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3