Detection and Application of Wearable Devices Based on Internet of Things in Human Physical Health

Author:

Lou Jingjing1,Yang Fan2ORCID,Lv Changsheng3ORCID

Affiliation:

1. Guangzhou Institute of Sports Science, Guangzhou 510620, Guangdong, China

2. Guangzhou Tianhe Sports Centre, Guangzhou 510620, Guangdong, China

3. Guangzhou Sports University, Guangzhou 510620, Guangdong, China

Abstract

In order to improve the detection function of wearable intelligent devices in the Internet of things and facilitate people to control a variety of information such as heart rate, exercise state, blood oxygen saturation, and so on, the scientific detection of human physical health based on wearable devices based on Internet of things technology is proposed. Through the combination of software- and hardware-related functional modules, the real-time detection of human physical health information can be effectively realized. Firstly, the detection principle of optical capacitance product pulse wave signal and the waveform characteristics of pulse wave are introduced, and then the application scenarios and advantages of wearable devices are further introduced; then, the convolutional neural network for pulse wave signal denoising and the basic principle of self-encoder are introduced; finally, the regression prediction method and support vector machine method for pulse wave signal feature extraction are introduced in detail. The pulse wave based on optical capacitance product is removed to improve the waveform quality of pulse wave signal. Firstly, the system software development environment is briefly described. Then, the software design of watch terminal master device based on MSP432 and belt terminal slave device based on MSP430 are described in detail, and the detailed program implementation flow of each key technology in the system is given. In addition, the fall detection algorithm based on threshold discrimination is studied, and the program implementation of the algorithm is also described in detail. Finally, the system is tested. The results show that normal state mainly include normal walking, jogging, and fast sitting, and the accuracy rate is 97%, 95%, and 93%, respectively. For fall state, the experimenter needs to simulate various possible fall states, and the accuracy rate is 95%, 93%, and 95%, respectively, which verifies the detection accuracy of the algorithm. The system can automatically turn on the satellite positioning function when the user’s physical sign parameters are abnormal or the user’s current fall dangerous situation occurs, and send the current position information and alarm content information through the GSM module, so that the dangerous situation can be found and handled at the first time.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Detection and Application of Wearable Devices Based on Internet of Things in Human Physical Health;Computational Intelligence and Neuroscience;2023-07-19

2. Terminal Software Defect Detection Method Based on Association Rules;2022 International Conference on Knowledge Engineering and Communication Systems (ICKES);2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3