Fault Diagnosis Method for Rolling Bearing Based on Sparse Principal Subspace Discriminant Analysis

Author:

Zhou Hongdi12,Zhu Lin12,Li Xixing12ORCID

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

2. Key Laboratory of Modern Manufacturing Quality Engineering in Hubei Province, Wuhan 430068, China

Abstract

Rolling bearings are omnipresent parts in industrial fields. To comprehensively reflect the status of rolling bearing and improve the classification accuracy, fusion information is widely used in various studies, which may result in high dimensionality, redundancy information of dataset, and time consumption. Thus, it is of crucial significance in extracting optimal features from high-dimensional and redundant feature space for classification. In this study, a fault diagnosis of rolling bearings model based on sparse principal subspace discriminant analysis is proposed. It extracts sparse discrimination information, meanwhile preserving the main energy of original dataset, and the sparse regularization term and sparse error term constrained by l2,1-norm are introduced to improve the performance of feature extraction and the robustness to noise and outliers. The multi-domain feature space involved a time domain, frequency domain, and time-frequency domain is first derived from the original vibration signals. Then, the intrinsic geometric features extracted by sparse principal subspace discriminant analysis are fed into a support vector machine classifier to recognize different operating conditions of bearings. The experimental results demonstrated that the feasibility and effectiveness of the proposed fault diagnosis model based on a sparse principal subspace discriminant analysis algorithm can achieve higher recognition accuracy than fisher discriminant analysis and its extensions, and it is relatively insensitive to the impact of noise and outliers owing to the sparse property.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3