Strain-Sensing Characteristics of Carbon Nanotube Yarns Embedded in Three-Dimensional Braided Composites under Cyclic Loading

Author:

Bai Huixiao1ORCID,Ding Gang2ORCID,Jia Shusheng1ORCID,Hao Jinguo3ORCID

Affiliation:

1. School of Packaging & Printing, Tianjin Vocational Institute, Tianjin 300410, China

2. Faculty of Technology, Tianjin Open University, Tianjin 300191, China

3. Sinopec Shijiazhuang Refining & Chemical Company, Shijiazhuang 050099, China

Abstract

Carbon nanotube yarns are embedded in three-dimensional (3D) braided composites with five-axis yarns, which are used as strain sensors to monitor the damage of 3D braided composites. In the cyclic mechanical loading experiment, the strain-sensing characteristics of 3D braided composites were studied by in situ measuring the resistance change of the embedded carbon nanotube yarn. The 3D five-directional braided composite prefabricated part based on carbon nanotube yarns was developed, and the progressive damage accumulation experiments were carried out on carbon nanotube yarns and specimens embedded in carbon nanotube yarns. The research results show that there is a good correlation between the change of relative resistance of the carbon nanotube yarn and the strain of the composite specimen during cyclic loading and unloading. When the tensile degree of the specimen increases beyond a certain range, the carbon nanotube yarn sensor embedded in the specimen shows resistance hysteresis and produces residual resistance. Therefore, the fiber can better monitor the progressive damage accumulation of 3D five-direction braided composites.

Funder

Tianjin Science and Technology Commission Natural Science Foundation

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3