Application of structural health monitoring techniques to composite wing panels

Author:

Romano Fulvio1ORCID,Ciminello Monica1,Sorrentino Assunta1,Mercurio Umberto1

Affiliation:

1. CIRA – Italian Aerospace Research Centre, Italy

Abstract

This detailed study proposes a structural health monitoring system which enables the identification, localisation, and correct measurement analysis, in relation to the damage and debonding induced by low energy impacts within aircraft composite wing panels. The said system has been envisaged as an offline system which aims to be considered as a valid alternative method in relation to the current first two maintenance approach levels: visual inspection, which is to be followed if necessary by ultrasonic scanning techniques. The architecture includes two different technologies which act at different frequency ranges: high-frequency sensors/actuators piezoceramics and low-frequency distributed fiber optic sensors. Experimental and numerical results on small stiffened panels are illustrated in this study, where technological verification and validation have been assessed within a laboratory-controlled environment. In addition, the potential benefit by utilising such techniques within the design of the aircraft composite structures has also been illustrated; in comparison with the current aircraft composite structures, a higher weight saving and better performing structures is foreseen.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3