The Study on the Relationship between Normalized Difference Vegetation Index and Fractional Green Canopy Cover in Five Selected Crops

Author:

Lykhovyd Pavlo V.1ORCID,Vozhehova Raisa A.2ORCID,Lavrenko Sergiy O.3ORCID,Lavrenko Nataliya M.4ORCID

Affiliation:

1. Department of Marketing, Transfer of Innovations and Economic Studies, Institute of Irrigated Agriculture of NAAS, Kherson 73483, Ukraine

2. Institute of Irrigated Agriculture of NAAS, Kherson 73483, Ukraine

3. Department of Agriculture, Kherson State Agrarian and Economic University, Kherson 73006, Ukraine

4. Department of Land Management, Geodesy, and Cadaster, Kherson State Agrarian and Economic University, Kherson 73006, Ukraine

Abstract

Crop models are of great use and importance in modern agriculture. Most models imply spatial vegetation indices, such as NDVI, or canopy cover characteristics, such as FGCC, to provide estimation of crops conditions and forecast productivity. The purpose of the study was to (1) determine the possibility of mutual conversion between spatial NDVI and Canopeo-derived FGCC in five crops (grain corn, sunflower, tomato, millet, and winter wheat) and (2) estimate the precision of such a conversion. The data set of the study was formed by the OneSoil AI derived satellite imagery on NDVI for the studied crops in different stages of their growing season combined with Canopeo-processed photographs of vegetating crops in the field with FGCC percentage calculation. The sets of NDVI and FGCC values were paired up and then statistically processed to obtain polynomial equations of NDVI into FGCC and inverse conversion for each crop. The results of the study revealed that mutual conversion between spatial NDVI and Canopeo-derived FGCC is possible. There is a strong direct correlation (R2 within 0.6779–0.9000 depending on the crop) between the studied indices for all crops. Close-growing crops, especially winter wheat, showed the highest correlation, while row crops and especially tomatoes had a less strong relationship between vegetation indices. The models for mutual conversion between FGCC and NDVI could be incorporated into the yield simulation models to improve the forecasting capacities.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3