1. Mazur P., Gozdowski D., & Wójcik-Gront E. (2022) Soil electrical conductivity and satellite-derived vegetation indices for evaluation of phosphorus, potassium and magnesium content, pH, and delineation of within-field management zones. Agriculture, 12(6), 883.
2. Mazur P., Gozdowski D., & Wnuk A. (2022) Relationships between soil electrical conductivity and Sentinel-2-derived NDVI with pH and content of selected nutrients. Agronomy, 12(2), 354.
3. Zhang Y., Guo L., Chen Y., Shi T., Luo M., Ju Q., Zhang H., & Wang S. (2019) Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11(14), 1683.
4. Lykhovyd, P. V. (2023) Using normalized difference vegetation index to estimate humus content in the soils of the South of Ukraine. Sectoral research XXI: characteristics and features: collection of scientific papers “SCIENTIA” with Proceedings of the V International Scientific and Theoretical Conference. (pp. 116-118) February 3, 2023, Chicago, USA. European Scientific Platform.
5. Vozhehova, R. A., Lykhovyd, P. V., Lavrenko, S. O., Kokovikhin, S. V., Lavrenko, N. M., Marchenko, T. Yu., Sydyakina, O. V., Hlushko, T. V., & Nesterchuk, V. V. (2019) Artificial neural network use for sweet corn water consumption prediction depending on cultivation technology peculiarities. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 10(1), 354-358.