Research on SLAM Road Sign Observation Based on Particle Filter

Author:

Wang Yifan1ORCID,Wang Xiaoyan1

Affiliation:

1. School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

With the development of computer hardware technology, the real-time problem of visual target tracking algorithm increasingly depends on hardware solutions. The core problem of visual target tracking is how to enhance the robustness of tracking algorithm to various complex background environments and various interference factors. Aiming at overcoming the defect that the traditional SLAM (simultaneous localization and map building) algorithm based on EKF (extended Kalman filter) has a slow repair speed for environmental interference, a Monocular SLAM_WOCPF (Monocular vision SLAM based on weight optimization combined particle filter) algorithm is proposed. The weights of all particles are reoptimized in the particle set and they are combined with the tendency of particles to degenerate and deplete. In this way, the chance of self replication of low weight particles is increased, thus increasing the diversity of the whole sample. Furthermore, the improved PF (particle filter) algorithm is applied to solve the problem of road sign observation of mobile robots, so as to expand its application scope. The results show that the mean road sign errors of the Monocular SLAM_WOCPF algorithm in two noise environments are 0.332/m and 0.441/m. The conclusion shows that the Monocular SLAM_WOCPF road sign observation method proposed in this paper can effectively improve the matching success rate of visual road signs and improve the observation quality.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3