Affiliation:
1. School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
Abstract
Global Navigation Satellite Systems (GNSS) with weak anti-jamming capability are vulnerable to intentional or unintentional interference, resulting in difficulty providing continuous, reliable, and accurate positioning information in complex environments. Especially in GNSS-denied environments, relying solely on the onboard Inertial Measurement Unit (IMU) of the Micro Aerial Vehicles (MAVs) for positioning is not practical. In this paper, we propose a novel cooperative relative positioning method for MAVs in GNSS-denied scenarios. Specifically, the system model framework is first constructed, and then the Extended Kalman Filter (EKF) algorithm, which is introduced for its ability to handle nonlinear systems, is employed to fuse inter-vehicle ranging and onboard IMU information, achieving joint position estimation of the MAVs. The proposed method mainly addresses the problem of error accumulation in the IMU and exhibits high accuracy and robustness. Additionally, the method is capable of achieving relative positioning without requiring an accurate reference anchor. The system observability conditions are theoretically derived, which means the system positioning accuracy can be guaranteed when the system satisfies the observability conditions. The results further demonstrate the validity of the system observability conditions and investigate the impact of varying ranging errors on the positioning accuracy and stability. The proposed method achieves a positioning accuracy of approximately 0.55 m, which is about 3.89 times higher than that of an existing positioning method.
Funder
National Natural Science Foundation of China
Key Industrial Innovation Chain Project in Industrial Domain
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference41 articles.
1. Rotating GNSS Antennas: Simultaneous LOS and NLOS Multipath Mitigation;Suzuki;GPS Solut.,2020
2. Using street based metrics to characterize urban typologies;Hermosilla;Comput. Environ. Urban Syst.,2014
3. Nicola, M., Falco, G., Morales Ferre, R., Lohan, E.-S., de la Fuente, A., and Falletti, E. (2020). Collaborative Solutions for Interference Management in GNSS-Based Aircraft Navigation. Sensors, 20.
4. José, B.B. (2014). Aplicación de Sistemas GNSS y SIG a Infraestructuras de Transporte: Estudio Sobre la Conducción Naturalista. [Ph.D. Thesis, Universidade da Coruña].
5. Wang, S., Dong, X., Liu, G., Gao, M., Xiao, G., Zhao, W., and Lv, D. (2022). GNSS RTK/UWB/DBA Fusion Positioning Method and Its Performance Evaluation. Remote Sens., 14.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献