A Novel Ranging and IMU-Based Method for Relative Positioning of Two-MAV Formation in GNSS-Denied Environments

Author:

Cheng Jia1,Ren Peng1,Deng Tingxiang1

Affiliation:

1. School of Telecommunications Engineering, Xidian University, Xi’an 710071, China

Abstract

Global Navigation Satellite Systems (GNSS) with weak anti-jamming capability are vulnerable to intentional or unintentional interference, resulting in difficulty providing continuous, reliable, and accurate positioning information in complex environments. Especially in GNSS-denied environments, relying solely on the onboard Inertial Measurement Unit (IMU) of the Micro Aerial Vehicles (MAVs) for positioning is not practical. In this paper, we propose a novel cooperative relative positioning method for MAVs in GNSS-denied scenarios. Specifically, the system model framework is first constructed, and then the Extended Kalman Filter (EKF) algorithm, which is introduced for its ability to handle nonlinear systems, is employed to fuse inter-vehicle ranging and onboard IMU information, achieving joint position estimation of the MAVs. The proposed method mainly addresses the problem of error accumulation in the IMU and exhibits high accuracy and robustness. Additionally, the method is capable of achieving relative positioning without requiring an accurate reference anchor. The system observability conditions are theoretically derived, which means the system positioning accuracy can be guaranteed when the system satisfies the observability conditions. The results further demonstrate the validity of the system observability conditions and investigate the impact of varying ranging errors on the positioning accuracy and stability. The proposed method achieves a positioning accuracy of approximately 0.55 m, which is about 3.89 times higher than that of an existing positioning method.

Funder

National Natural Science Foundation of China

Key Industrial Innovation Chain Project in Industrial Domain

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3