Affiliation:
1. School of Electrical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
Abstract
This paper presents a device-free human detection method for using Received Signal Strength Indicator (RSSI) measurement of Wireless Sensor Network (WSN) with packet dropout based on ZigBee. Packet loss is observed to be a familiar phenomenon with transmissions of WSNs. The packet reception rate (PRR) based on a large number of data packets cannot reflect the real-time link quality accurately. So this paper firstly raises a real-time RSSI link quality evaluation method based on the exponential smoothing method. Then, a device-free human detection method is proposed. Compared to conventional solutions which utilize a complex set of sensors for detection, the proposed approach achieves the same only by RSSI volatility. The intermittent Karman algorithm is used to filter RSSI fluctuation caused by environment and other factors in data packets loss situation, and online learning is adopted to set algorithm parameters considering environmental changes. The experimental measurements are conducted in laboratory. A high-quality network based on ZigBee is obtained, and then, RSSI can be calculated from the receive sensor modules. Experimental results show the uncertainty of RSSI change at the moment of human through the network area and confirm the validity of the detection method.
Funder
Henan Province Young Talent Lift Project
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献