Determining Commercial Parking Vacancies Employing Multiple WiFiRSSI Fingerprinting Method

Author:

Magsino Elmer1ORCID,Barrameda Juan Miguel Carlo1,Puno Andrei1,Ong Spencer1,Siapco Cyrill1,Vibal Jolo1

Affiliation:

1. Department of Electronics and Computer Engineering, Gokongwei College of Engineering, De La Salle University, 2401 Taft Ave, Malate, Metro Manila, Manila 1004, Philippines

Abstract

In this study, we implemented a parking occupancy/vacancy detection system (POVD) in a scaled-down model of a parking system for commercial centers by employing multiple WiFi access points. By exploiting the presence of WiFi routers installed in a commercial establishment, the WiFi’s received signal strength indicator (RSSI) signals were collected to establish the parking fingerprints and then later used to predict the number of occupied/vacant slots. Our extensive experiments were divided into two phases, namely: offline training and online matching phases. During the offline stage, the POVD collects available WiFi RSSI readings to determine the parking lot’s fingerprint based on a given scenario and stores them in a fingerprint database that can be updated periodically. On the other hand, the online stage predicts the number of available parking slots based on the actual scenario compared to the stored database. We utilized multiple router setups in generating WiFi signals and exhaustively considered all possible parking scenarios given the combination of 10 maximum access points and 10 cars. From two testing locations, our results showed that, given a parking area dimension of 13.40 m2 and 6.30 m2 and with the deployment of 4 and 10 routers, our system acquired the best accuracy of 88.18% and 100%, respectively. Moreover, the developed system serves as experiential evidence on how to exploit the available WiFi RSSI readings towards the realization of a smart parking system.

Funder

De La Salle University Science Foundation Publication Development Grant

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3