Deep Learning Hash for Wireless Multimedia Image Content Security

Author:

Zheng Yu1ORCID,Zhu Jiezhong1,Fang Wei1,Chi Lian-Hua2

Affiliation:

1. School of Computer & Software, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

2. Department of Computer Science and Information Technology, La Trobe University, VIC 3086, Australia

Abstract

With the explosive growth of the wireless multimedia data on the wireless Internet, a large number of illegal images have been widely disseminated in wireless networks, which seriously endangers the content security of wireless networks. However, how to identify and classify illegal images quickly, accurately, and in real time is a key challenge for wireless multimedia networks. To avoid illegal images circulating on the Internet, each image needs to be detected, extracted features, and compared with the image in the feature library to verify the legitimacy of the image. An improved image deep learning hash (IDLH) method to learn compact binary codes for image search is proposed in this paper. Specifically, there are three major processes of IDLH: the feature extraction, deep secondary search, and image classification. IDLH performs image retrieval by the deep neural networks (DNN) as well as image classification with the binary hash codes. Different from other deep learning-hash methods that often entail heavy computations by using a conventional classifier, exemplified by K nearest neighbor (K-NN) and support vector machines (SVM), our method learns classifiers using binary hash codes, which can be learned synchronously in training. Finally, comprehensive experiments are conducted to evaluate IDLH method by using CIFAR-10 and Caltech 256 image library datasets, and the results show that the retrieval performance of IDLH method can effectively identify illegal images.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative Adversarial Attacks on Fingerprint Recognition Systems;2021 International Conference on Information Networking (ICOIN);2021-01-13

2. Adversarial attacks on fingerprint liveness detection;EURASIP Journal on Image and Video Processing;2020-01-13

3. Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks;Computational Intelligence and Neuroscience;2019-10-09

4. Deep CNN-Assisted Personalized Recommendation over Big Data for Mobile Wireless Networks;Wireless Communications and Mobile Computing;2019-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3