Deep CNN-Assisted Personalized Recommendation over Big Data for Mobile Wireless Networks

Author:

Zheng Yu1ORCID,Xu Xiaolong1ORCID,Qi Lianyong2ORCID

Affiliation:

1. School of Computer & Software, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

2. School of Information Science and Engineering, Qufu Normal University, Qufu 273165, Shandong, China

Abstract

At present, to improve the accuracy and performance for personalized recommendation in mobile wireless networks, deep learning has been widely concerned and employed with social and mobile trajectory big data. However, it is still challenging to implement increasingly complex personalized recommendation applications over big data. In view of this challenge, a hybrid recommendation framework, i.e., deep CNN-assisted personalized recommendation, named DCAPR, is proposed for mobile users. Technically, DCAPR integrates multisource heterogeneous data through convolutional neural network, as well as inputs various features, including image features, text semantic features, and mobile social user trajectories, to construct a deep prediction model. Specifically, we acquire the location information and moving trajectory sequence in the mobile wireless network first. Then, the similarity of users is calculated according to the sequence of moving trajectories to pick the neighboring users. Furthermore, we recommend the potential visiting locations for mobile users through the deep learning CNN network with the social and mobile trajectory big data. Finally, a real-word large-scale dataset, collected from Gowalla, is leveraged to verify the accuracy and effectiveness of our proposed DCAPR model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3