Affiliation:
1. School of Computer & Software, Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
2. School of Information Science and Engineering, Qufu Normal University, Qufu 273165, Shandong, China
Abstract
At present, to improve the accuracy and performance for personalized recommendation in mobile wireless networks, deep learning has been widely concerned and employed with social and mobile trajectory big data. However, it is still challenging to implement increasingly complex personalized recommendation applications over big data. In view of this challenge, a hybrid recommendation framework, i.e., deep CNN-assisted personalized recommendation, named DCAPR, is proposed for mobile users. Technically, DCAPR integrates multisource heterogeneous data through convolutional neural network, as well as inputs various features, including image features, text semantic features, and mobile social user trajectories, to construct a deep prediction model. Specifically, we acquire the location information and moving trajectory sequence in the mobile wireless network first. Then, the similarity of users is calculated according to the sequence of moving trajectories to pick the neighboring users. Furthermore, we recommend the potential visiting locations for mobile users through the deep learning CNN network with the social and mobile trajectory big data. Finally, a real-word large-scale dataset, collected from Gowalla, is leveraged to verify the accuracy and effectiveness of our proposed DCAPR model.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献