Path-Based Approach for Expanding Rail Transit Network in a Metropolitan Area

Author:

Li Anjun12ORCID,Wang Dian12ORCID,Peng Qiyuan12ORCID,Wang Lisha3ORCID

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China

2. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Chengdu 610031, China

3. School of Architecture and Urban Planning, Chongqing University, Chongqing 400030, China

Abstract

Rail transit network design is an important strategic problem in determining the layout of infrastructure and improving operating performance. A core transit network with multiclass rail transit systems has been constructed in many metropolitan areas worldwide. In this study, we aimed to expand an existing network to shorten travel time and improve service quality under the restriction of limited transport supply. We formulate the studied problem as a mixed-integer linear model to obtain optimal construction links, the number of trains required on each link, and the path selected by each traveler such that the weighted sum of total costs from the perspective of travelers, operators, and investors is minimized. The formulated model is path-based, where feasible paths for each traveler are generated to describe the full door-to-door journey, including the first/last mile, transfers, and multiclass transit modes. Owing to the complexity of the network design problem and because it is impractical to enumerate all feasible paths for each traveler in real-size problems, we propose a column generation-based algorithm to find both tight lower bounds and good-quality solutions efficiently by considering only a subset of feasible paths. We prove that the pricing subproblem in column generation can be decomposed into multiple shortest path problems, which can be solved efficiently and separately, based on O/D pairs instead of individual travelers. A rail transit network along a metropolitan corridor was studied as an example. Multiple computational experiments were conducted, and the results illustrate the validity and practicality of the proposed methodology for solving the problem.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3