Behaviour of Foam Concrete under Impact Loading Based on SHPB Experiments

Author:

He Yongliang12,Gao Mingshi123ORCID,Zhao Hongchao34ORCID,Zhao Yichao12ORCID

Affiliation:

1. School of Mines, Key Laboratory of Deep Coal Resource Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. The State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

3. School of Geology and Mining Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China

4. School of Civil, Mining and Environmental Engineering, University of Wollongong, Northfield, NSW 2500, Australia

Abstract

This paper presents an innovative method for using foam concrete as a typical building material for soft structures in underground coal mines subjected to dynamic loading. To understand the behaviour of foam concrete under impact loading, a total of 30 specimens with a diameter of 50 mm and a height of 50 mm were experimentally tested using a 75 mm diameter split Hopkinson pressure bar (SHPB) device. The key parameters investigated in the present study included the type of foam concrete (fly ash and sand), the density of foam concrete (1000, 1200 and 1400 kg/m3), and the impact velocity (3.0, 4.0, 5.0, 6.0, and 7.0 m/s). Six specimens were also tested under static loading for comparison. The stress-strain curve of foam concrete under impact loading showed three stages, started with a linear elastic stage, followed by a yield stage and ended with a pore wall destruction stage. The test results also indicated that the dynamic increase factor, ultimate compressive strength, tenacity, and specific energy absorption increase with the strain rate under the same density. In particular, both the failure model and the behaviour of foam concrete were affected by the impact velocity. The findings of this research provide a reference for further research on the application of foam concrete in underground coal mines.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3