An Experimental Study on Mechanical Properties and Fracture Characteristics of Saturated Concrete under Coupling Effect of Low Temperature and Dynamic Load

Author:

Wang Mengxiang12ORCID,Zong Qi1ORCID,Wang Haibo1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, 232001 Anhui, China

2. Fujian Provincial Colleges and University Engineering Research Canter of Engineering Quality Testing and Safety Assessment, Longyan 364000, China

Abstract

Concrete is widely used in bridge foundation, water supply, and drainage engineering. On the one hand, the saturated concrete is always in the saturated state. In the cold winter, northeast China and the alpine region suffer from freezing disaster. On the other hand, it has to continue to bear the dynamic load action of vehicles and running water, which makes the stress state of saturated concrete more complicated under the coupling action of low temperature and dynamic load. In order to study the mechanical properties and fracture characteristics of saturated concrete under the coupling effect of low temperature and dynamic load, the impact compression tests of concrete under normal temperature 20°C, -5°C, -10°C, and -15°C were carried out with a diameter of 74 mm split Hopkinson pressure bar (SHPB). The stress-strain characteristics, energy dissipation, and failure modes of specimens under different low temperatures were studied. From a detailed point of view, the failure mechanism of low-temperature water-saturated concrete is expounded. The results show that under the same dynamic load, the dynamic stress-strain curve of saturated concrete changes obviously with the change of low temperature. The dynamic compressive strength of the natural specimen at room temperature is high while that of the water-saturated specimen is low, and the dynamic compressive strength is opposite at low temperature. At the same temperature, the energy time-history curves of concrete in the saturated state are different from those in the natural state, mainly in the plastic section. The energy time-history curves of saturated concrete are different at different temperatures, and the energy dissipation rate of saturated concrete increases linearly with the decrease of temperature. Under the experimental conditions, the dynamic strength of saturated concrete increases linearly with the decrease of temperature, and the peak strain of saturated concrete decreases linearly with the increase of temperature. With the decrease of temperature, the fragmentation of saturated concrete under the impact of the same air pressure gradually increases, and the integrity of the specimen gradually improves. Low temperature can improve the impact resistance of saturated concrete, which is consistent with the failure law of natural state concrete. The water-saturated low-temperature state of the concrete void is filled with ice crystal particles; for low-temperature water-saturated concrete in the impact of the dynamic load, the microstructure is affected by the ice crystal structure which is not easy to change; the specimen along the axial force direction microdefect development produces a crack, the crack along the parallel to the pressure direction of cracking, through the two ends of the specimen, and finally produces axial splitting tensile damage. The research results have important theoretical significance for the safety design of low temperature saturated concrete structures.

Funder

Anhui Jianzhu University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Experimental study of com-pressive strength of early-strength con crete cured under low temperatures for Qinghai-Tibet railway;Y. J. Xie;Bridge Construction,2003

2. Quality control of low(minus)-temperature, early-strength and high-performance concrete of Qinghai-Tibet railway project in frozen plateau area;L. P. Gu;Journal of Railway Engineering Society,2004

3. Compressive Stress–Strain Response of Concrete Exposed to Low Temperatures

4. Experimental study on the axial-compression performance of concrete at cryogenic temperatures

5. Effect of Temperatures and Moisture Content on the Fracture Properties of Engineered Cementitious Composites (ECC)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3