Evaluation Method of Wind Speed Time-Shifting Characteristics at Multiple Scales and Its Application in Wind Power System

Author:

Wang Han1ORCID,Han Shuang1ORCID,Liu Yongqian1,Lin Aimei1

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University (NCEPU), Beijing 102206, China

Abstract

The wind speed sequences at different spatial positions have a certain spatiotemporal coupling relationship. It is of great significance to analyze the clustering effect of the wind farm(s) and reduce the adverse impact of large-scale wind power integration if we can grasp this relationship at multiple scales. At present, the physical method cannot optimize the time-shifting characteristics in real time, and the research scope is concentrated on the wind farm. The statistical method cannot quantitatively describe the temporal relationship and the speed variation among wind speed sequences at different spatial positions. To solve the above problems, a quantification method of wind speed time-shifting characteristics based on wind process is proposed in this paper. Two evaluation indexes, the delay time and the decay speed, are presented to quantify the time-shifting characteristics. The effectiveness of the proposed method is verified from the perspective of the correlation between wind speed sequences. The time-shifting characteristics of wind speed sequences under the wind farms scale and the wind turbines scale are studied, respectively. The results show that the proposed evaluation method can effectively achieve the quantitative analysis of time-shifting and could improve the results continuously according to the actual wind conditions. Besides, it is suitable for any spatial scale. The calculation results can be directly applied to the wind power system to help obtain the more accurate output of the wind farm.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3