Monthly Unit Commitment Model and Algorithm with Renewable Energy Generation Considering System Reliability

Author:

Zhu Yongli1,Liu Xuechun1ORCID,Zhai Yujia1,Deng Ran1

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China

Abstract

With the sustained growth in renewable energy penetration, it is important to incorporate the interval prediction information of the wind and photovoltaic power into the monthly unit commitment model and introduce the system reliable rate as an indicator to measure the system reliability, which make an important contribution to deal with the volatility and randomness of the wind and photovoltaic power and ensure the economy and reliability of the monthly unit commitment. To enhance the practicality of the model and improve the solving ability, the multiobjective function composed by operating cost and reliable rate is transformed into a single-objective function by using the evaluation function based on geometric weighting method. An adaptive genetic algorithm (AGA) is used to solve the above problem when the prohibiting inbreeding strategy is adopted to replace the mutation operator, avoiding the hybridization between close relatives and containing the diversity of the population. Finally, the testing systems verify the validity and accuracy of the proposed model and algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construct watchlist security constraints for monthly unit commitment considering wind power uncertainty;IET Renewable Power Generation;2024-02-20

2. Design of a Simplified ANN Model for Real Power Prediction Problem;Emerging Research in Computing, Information, Communication and Applications;2021-12-01

3. Evaluation Method of Wind Speed Time-Shifting Characteristics at Multiple Scales and Its Application in Wind Power System;Mathematical Problems in Engineering;2020-11-21

4. Solution for renewable future;E3S Web of Conferences;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3