A Noncontact Method for Locating Radial Artery above Radial Styloid Process in Thermal Image

Author:

Geng Xingguang123ORCID,Liu Su13,Zhang Yitao13ORCID,Hou Jiena123,Zhang Shaolong13,Zhang Jun123,Zhang Haiying123ORCID

Affiliation:

1. Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing, China

Abstract

A radial artery above the radial styloid process is called GUAN and is a critical position for collecting pulse wave in traditional Chinese medicine theory. Locating GUAN is a precondition for collecting radial pulse wave. However, existing methods for locating GUAN lead to large deviations. This paper proposes a novel nontouch method for locating GUAN based on thermal imaging and image processing. This method consists of three parts: the infrared thermal imaging location imaging platform, the wrist edge contour extraction algorithm based on arbitrary angle edge recognition, and radial protrusion recognition algorithm (x coordinate identification algorithm of GUAN) and radial artery fitting algorithm (y coordinate identification algorithm of GUAN). The infrared thermal imaging positioning imaging platform is used to ensure that the wrist of the subject enters the fixed imaging area in a fixed position during each measurement and transmits the thermal imaging images carrying the image information of radial processes and radial arteries to the upper computer. Arbitrary angle edge recognition algorithm is used to extract wrist contour and radial artery edge information. The x-axis coordinates of the radial artery were provided by the identification algorithm, and the y-axis coordinates of the radial artery were provided by the fitting algorithm. Finally, the x and y coordinates determine the GUAN position. The algorithm for locating GUAN could provide repeatable and reliable x and y coordinates. The proposed method shows that relative standard deviation (RSD) of x distance of GUAN is less than 9.0% and RSD of y distance of GUAN is less than 5.0%. The proposed method could provide valid GUAN coordinates and reduce deviations of locating GUAN.

Funder

National Major Science and Technology Projects of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3