Irradiated Bladder Cancer Cells Expressing both GM-CSF and IL-21 versus Either GM-CSF or IL-21 Alone as Tumor Vaccine in a Mouse Xenograft Model

Author:

Peng Junming12,Ye Liefu2,Li Tao2,Zhu Qingguo2,Guo Jinan1,Xiao Kefeng1ORCID,Wei Yongbao2ORCID

Affiliation:

1. Department of Urology, The Second Clinical Medical College of Jinan University/Shenzhen People’s Hospital, Shenzhen, Guangdong 518000, China

2. Department of Urology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China

Abstract

Previous studies have established the efficacy of irradiated cancer cells overexpressing GM-CSF or IL-21 as a vaccine. Here we examined whether the vaccine efficacy was greater when both factors were overexpressed together. MB49 bladder cancer cells were transfected with expression plasmid pT7TS encoding mouse GM-CSF and human IL-21, and then irradiated with 100 Gy at 4 days later. The cells (1×107 per animal) were injected subcutaneously into C57BL/6 mice at 0, 4, 8, and 12 days after inoculation with MB49 tumor xenografts. Control animals were injected with MB49 cells transfected with pT7TS encoding GM-CSF or IL-21 on its own. Tumor growth was monitored for 45 days and compared among the groups using repeated-measures ANOVA. Vaccination with irradiated MB49 cells did not affect xenograft growth. Vaccination with irradiated cells overexpressing GM-CSF or IL-21 alone significantly inhibited tumor growth and led to significantly more CD4+ CD8+ T cells and fewer CD4+ Foxp3+ T cells in the spleen and xenograft. These effects were even greater following vaccination with irradiated cells overexpressing both GM-CSF and IL-21. Irradiated bladder cancer cells overexpressing both GM-CSF and IL-21 are more effective than cells expressing either factor alone as a vaccine against bladder cancer.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3