High-dose radiation-induced immunogenic cell death of bladder cancer cells leads to dendritic cell activation

Author:

Zeng XianlinORCID,Luo Daiqin,Zhang Shuai,Cui Zhonghui,Wang Yun,Chen Jin,Zhang Shichao,Teng Lijing,Hu Zuquan,Liu Lina,Zhou Shi,Zeng Zhu,Long JinhuaORCID

Abstract

Radiotherapy is a commonly used method in the treatment of bladder cancers (BC). Radiation-induced immunogenic cell death (ICD) is related to the immune response against cancers and their prognoses. Even though dendritic cells (DC) act as powerful antigen-presenting cells in the body, their precise role in this ICD process remains unclear. Accordingly, an in vitro study was undertaken to ascertain whether high-dose radiation-induced ICD of BC cells could regulate the immune response of DC. The results indicated that high-dose radiation treatments of BC cells significantly increased their levels of apoptosis, blocked their cell cycle in the G2/M phase, increased their expression of ICD-related proteins, and upregulated their secretion of CCL5 and CCL21 which control the directed migration of DC. It was also noted that expression of CD80, CD86, CCR5, and CCR7 on DC was upregulated in the medium containing the irradiated cells. In conclusion, the present findings illustrate that high-dose radiation can induce the occurrence of ICD within BC cells, concomitantly resulting in the activation of DC. Such findings could be of great significance in increasing the understanding how radiotherapy of BC may work to bring about reductions in cell activity and how these processes in turn lead to immunoregulation of the function of DC.

Funder

National Natural Science Foundation of China

the high-level Innovative Talents Training Program of Guizhou Province - “100” Level Talents

Science and Technology Foundation of Guizhou Province

Guizhou Provincial Science and Technology Department

Guizhou Provincial Youth Science and Technology Talents Growth Project

Science and Technology Program of Guizhou Province

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3