SKaMPI: A Comprehensive Benchmark for Public Benchmarking of MPI

Author:

Reussner Ralf1,Sanders Peter2,Träff Jesper Larsson3

Affiliation:

1. Distributed Systems Technology Center (DSTC), Monash University Caulfield Campus, 900 Dandenong Road, Caulfield East, VIC 3145, Australia

2. Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany

3. C&C; Research Laboratories, NEC Europe, Rathausallee 10, D-53757 Sankt Augustin, Germany

Abstract

The main objective of the MPI communication library is to enableportable parallel programmingwith high performance within the message-passing paradigm. Since the MPI standard has no associated performance model, and makes no performance guarantees, comprehensive, detailed and accurate performance figures for different hardware platforms and MPI implementations are important for the application programmer, both for understanding and possibly improving the behavior of a given program on a given platform, as well as for assuring a degree of predictable behavior when switching to another hardware platform and/or MPI implementation. We term this latter goalperformance portability, and address the problem of attaining performance portability by benchmarking. We describe the SKaMPI benchmark which covers a large fraction of MPI, and incorporates well-accepted mechanisms for ensuring accuracy and reliability. SKaMPI is distinguished among other MPI benchmarks by an effort to maintain a public performance database with performance data from different hardware platforms and MPI implementations.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CommBench: Micro-Benchmarking Hierarchical Networks with Multi-GPU, Multi-NIC Nodes;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

2. A methodology for assessing computation/communication overlap of MPI nonblocking collectives;Concurrency and Computation: Practice and Experience;2022-08-05

3. A Survey of Communication Performance Models for High-Performance Computing;ACM Computing Surveys;2019-11-30

4. Performance Prediction of Explicit ODE Methods on Multi-Core Cluster Systems;Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering;2019-04-04

5. Autotuning MPI Collectives using Performance Guidelines;Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region;2018-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3