A Survey of Communication Performance Models for High-Performance Computing

Author:

Rico-Gallego Juan A.1ORCID,Díaz-Martín Juan C.1,Manumachu Ravi Reddy2ORCID,Lastovetsky Alexey L.2

Affiliation:

1. University of Extremadura, Spain

2. University College Dublin, Ireland

Abstract

This survey aims to present the state of the art in analytic communication performance models, providing sufficiently detailed descriptions of particularly noteworthy efforts. Modeling the cost of communications in computer clusters is an important and challenging problem. It provides insights into the design of the communication pattern of parallel scientific applications and mathematical kernels and sets a clear ground for optimization of their deployment in the increasingly complex high-performance computing infrastructure. The survey provides background information on how different performance models represent the underlying platform and shows the evolution of these models over time from early clusters of single-core processors to present-day multi-core and heterogeneous platforms. Prospective directions for future research in the area of analytic communication performance modeling conclude the survey.

Funder

Science Foundation Ireland

European Regional Development Fund ”A way to achieve Europe„

Extremadura Local Government

EU under the COST Program Action IC1305: Network for Sustainable Ultrascale Computing

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference97 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Inter-Datacenter AllReduce With Multiple Trees;IEEE Transactions on Network Science and Engineering;2024-09

2. Graph Computation with Adaptive Granularity;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. 3D Parallelism for Transformers via Integer Programming;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Network states-aware collective communication optimization;Cluster Computing;2024-03-10

5. SUARA: A scalable universal allreduce communication algorithm for acceleration of parallel deep learning applications;Journal of Parallel and Distributed Computing;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3