Dynamic Rock-Breaking Process of TBM Disc Cutters and Response Mechanism of Rock Mass Based on Discrete Element

Author:

Zhang Qinglong1ORCID,Zhu Yanwen1,Du Canxun2,Du Sanlin2,Shao Kun2,Jin Zhihao1

Affiliation:

1. Department of Civil Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Huaneng Tibet Hydropower Safety Engineering Technology Research Center, Tibet, China

Abstract

Rock-breaking efficiency of full-face rock tunnel boring machine (TBM) is closely related to the performance of the disc cutter and the characteristics of the rock mass. In the point of view of mesomechanics, the particle flow code (PFC) is used to establish a numerical model of the rock mass and the disc cutter, and the process of TBM disc cutter intrusion into the rock mass is analyzed. The dynamic response mechanism and crack evolution process of the rock mass under the action of the disc cutter are studied on the basis of micromechanics, and the relationship between the rock mass crack, penetration, and cutting force during the intrusion of the disc cutter is revealed. The sensitivity analysis is carried out on the confining pressure conditions and the influence parameters of the disc cutter spacing. The results show that the rock breaking by disc cutter undergoes the transformation characteristics of compaction, shearing, and tension failure modes, and the failure process of the rock mass is the joint action of tension and shear. In the whole process of rock breaking, the disc cutter has the phenomenon of repeated loading-unloading alternation and leaping rock breaking; after the penetration of the disc cutter reached 9.0 mm, penetration creaks begin to appear on the surface of the rock mass; the penetration was obviously reduced with the increase of confining pressure, and it is mainly the penetration cracks on the surface; after the disc cutter spacing reaches 100.0 mm, there is no penetration crack between the two disc cutters. The research conclusion can provide a reference for the disc cutter optimization design.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3