Sliding Mode Controllers for Standalone PV Systems: Modeling and Approach of Control

Author:

Chaibi Y.1ORCID,Salhi M.1,El-jouni A.2

Affiliation:

1. 2EMI Team, ENSAM, Moulay Ismail University, B.P 15290 El Mansour Meknes, Morocco

2. Physics Department, “Centre Régional des Métiers d’Education et de Formation” (CRMEF), Tangier, Morocco

Abstract

This paper presents a single-phase standalone photovoltaic (PV) system with two stages of converters. The aim of this work is to track the maximum power point (MPP) so as to transfer the maximum available power to the load and to control the output current in order to feed the AC load by a sinusoidal current. These goals are attained by using the sliding mode to design control laws in order to command the boost DC-DC and the inverter switches. Thus, a maximum power point tracking (MPPT) and an output current controller based on the sliding mode are proposed. The innovative aspect of this work is to propose a standalone PV system with the controllers based only on the sliding mode control approach. The proposed system is modeled and simulated under MATLAB Simulink under fast variations of irradiance and temperature. Then, the obtained results using the suggested MPPT are compared to those using the incremental conductance (IC) method. These results demonstrate the superiority of the sliding mode MPPT in terms of the tracking speed, the efficiency, and the time of response. Moreover, the current controller provides an output current of high quality with a THD of 3.47%. Furthermore, for accurate results, these controllers are evaluated under the fluctuations of two daily climatic profiles (sunny and cloudy) and compared those of the IC method. The results illustrate that the sliding mode MPPT has the potential of generating more electrical energy than the IC MPPT with benefits of up to 13.02% for the sunny daily profile and 27.57% for the cloudy one.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3