Genome Structure ofBacillus cereustsu1 and Genes Involved in Cellulose Degradation and Poly-3-Hydroxybutyrate Synthesis

Author:

Li Hui1ORCID,Zhou Suping1ORCID,Johnson Terrance1,Vercruysse Koen1,Lizhi Ouyang1ORCID,Ranganathan Parthasarathy1,Phambu Nsoki1,Ropelewski Alexander J.2,Thannhauser Theodore W.3

Affiliation:

1. College of Agricultural, Human and Natural Sciences, Tennessee State University, Nashville, TN, USA

2. Pittsburgh Supercomputing Center, Pittsburgh, PA, USA

3. R.W. Holley Center for Agriculture and Health, Plant, Soil and Nutrition Research Unit, USDA, ARS, Ithaca, NY, USA

Abstract

In previous work, we reported on the isolation and genome sequence analysis ofBacillus cereusstrain tsu1 NCBI accession number JPYN00000000. The 36 scaffolds in the assembled tsu1 genome were all aligned withB. cereusB4264 genome with variations. Genes encoding for xylanase and cellulase and the cluster of genes in the poly-3-hydroxybutyrate (PHB) biosynthesis pathway were identified in tsu1 genome. The PHB accumulation inB. cereustsu1 was initially identified using Sudan Black staining and then confirmed using high-performance liquid chromatography. Physical properties of these PHB extracts, when analyzed with Raman spectra and Fourier transform infrared spectroscopy, were found to be comparable to the standard compound. The five PHB genes in tsu1(phaA,phaB,phaR,phaC,andphaP)were cloned and expressed with TOPO cloning, and the recombinant proteins were validated using peptide mapping of in-gel trypsin digestion followed by mass spectrometry analysis. The recombinantE. coliBL21 (DE3) (over)expressingphaCwas found to accumulate PHB particles. The cellulolytic activity of tsu1 was detected using carboxymethylcellulose (CMC) plate Congo red assay and the shift towards low-molecular size forms of CMC revealed by gel permeation chromatography in CMC liquid culture and the identification of a cellulase in the secreted proteome.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3