Neural Network Based Retrieval of Atmospheric Temperature Profile Using AMSU-A Observations

Author:

Gangwar R. K.1,Mathur A. K.1,Gohil B. S.1,Basu Sujit2

Affiliation:

1. Geo-Physical Parameter Retrievals Division, Atmospheric and Oceanic Sciences Group (EPSA), Space Applications Centre (ISRO), Ahmedabad, Gujarat 380015, India

2. Brahmprakash Scientist, Space Applications Centre (ISRO), Ahmedabad, Gujarat 380015, India

Abstract

The present study describes artificial neural network (ANN) based approach for the retrieval of atmospheric temperature profiles from AMSU-A microwave temperature sounder. The nonlinear relationship between the temperature profiles and satellite brightness temperatures dictates the use of ANN, which is inherently nonlinear in nature. Since latitudinal variation of temperature is dominant one in the Earth’s atmosphere, separate network configurations have been established for different latitudinal belts, namely, tropics, mid-latitudes, and polar regions. Moreover, as surface emissivity in the microwave region of electromagnetic spectrum significantly influences the radiance (or equivalently the brightness temperature) at the satellite altitude, separate algorithms have been developed for land and ocean for training the networks. Temperature profiles from National Center for Environmental Prediction (NCEP) analysis and brightness temperature observations of AMSU-A onboard NOAA-19 for the year 2010 have been used for training of the networks. Further, the algorithm has been tested on the independent dataset comprising several months of 2012 AMSU-A observations. Finally, an error analysis has been performed by comparing retrieved profiles with collocated temperature profiles from NCEP. Errors in the tropical region are found to be less than those in the mid-latitude and polar regions. Also, in each region the errors over ocean are less than the corresponding ones over land.

Publisher

Hindawi Limited

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3